Перевод: с русского на все языки

со всех языков на русский

для работы с охлаждением

  • 1 шлифовальный станок для работы с охлаждением

    Универсальный русско-немецкий словарь > шлифовальный станок для работы с охлаждением

  • 2 шлифовальный станок

    Большой русско-немецкий полетехнический словарь > шлифовальный станок

  • 3 система кондиционирования воздуха

    1. Klimaanlage

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 4 система кондиционирования воздуха

    1. air conditioning system

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 5 система кондиционирования воздуха

    1. système de conditionnement d'air

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > система кондиционирования воздуха

  • 6 двигатель

    м.
    engine; motor

    двигатель, работающий на жидком топливе — oil engine

    двигатель, запускаемый без предварительного подогрева — cold-starting engine

    двигатель, работающий на бедных смесях — lean-burn engine

    двигатель, работающий на тяжёлом топливе — heavy-oil engine

    двигатель, расположенный в задней части автомобиля — rear-mounted engine

    двигатель, расположенный в передней части автомобиля — front-mounted engine

    двигатель, расположенный под полом кузова — underfloor engine

    двигатель, сертифицированный EPA для использования в любом штате, кроме Калифорнии — federal engine

    двигатель с цилиндрами, расположенными параллельно коленчатому валу — axial engine

    двигатель, у которого диаметр цилиндра больше хода поршня — oversquare engine

    двигатель, у которого диаметр цилиндра меньше хода поршня — overstroked engine, undersquare engine

    двигатель, у которого диаметр цилиндра равен ходу поршня — square(-stroke) engine

    - автобусный двигатель
    - автомобильный двигатель
    - адиабатный двигатель
    - аксиально-поршневой двигатель
    - бензиновый двигатель
    - бескривошипный двигатель
    - вертикальный двигатель
    - верхнеклапанный двигатель
    - водородный двигатель
    - восстановленный двигатель
    - восьмицилиндровый двигатель
    - вспомогательный двигатель
    - высокооборотный двигатель
    - газовый двигатель
    - горизонтальный двигатель
    - двигатель без гильз цилиндров
    - двигатель без наддува
    - двигатель в сборе
    - двигатель внутреннего сгорания
    - двигатель гоночного автомобиля
    - двигатель грузового автомобиля
    - двигатель исполнительного механизма
    - двигатель легкового автомобиля
    - двигатель модульной конструкции
    - двигатель небольшого рабочего объёма
    - двигатель с воздушным охлаждением
    - двигатель с воспламенением от сжатия
    - двигатель с впрыском топлива
    - двигатель с высоким кпд
    - двигатель с высокой степенью сжатия
    - двигатель с жидкостным охлаждением
    - двигатель с инерционным наддувом
    - двигатель с искровым зажиганием
    - двигатель с малым расходом топлива
    - двигатель с наддувом
    - двигатель с низкой степенью сжатия
    - двигатель с переменной степенью сжатия
    - двигатель с предкамерой
    - двигатель с промежуточным охлаждением
    - двигатель с расточенными цилиндрами
    - двигатель с сухим картером
    - двигатель с турбонаддувом
    - двигатель с уравновешивающим валом
    - двигатель Стирлинга
    - двухтактный двигатель
    - двухтопливный двигатель
    - двухцилиндровый двигатель
    - дефорсированный двигатель
    - дизельный двигатель
    - длинноходный двигатель
    - заглохший двигатель
    - исследовательский двигатель
    - карбюраторный двигатель
    - короткоходный двигатель
    - малооборотный двигатель
    - малотоксичный двигатель
    - многотопливный двигатель
    - многоцилиндровый двигатель
    - наклонный двигатель
    - нижнеклапанный двигатель
    - низкооборотный двигатель
    - одноцилиндровый двигатель
    - оппозитный двигатель
    - отказавший двигатель
    - отремонтированный двигатель
    - поперечно расположенный двигатель
    - поршневой двигатель
    - предкамерный двигатель
    - прогретый двигатель
    - продольно расположенный двигатель
    - пусковой двигатель
    - пятицилиндровый двигатель
    - роторный двигатель
    - рядный двигатель
    - спиртовой двигатель
    - стационарный двигатель
    - тепловой двигатель
    - трёхцилиндровый двигатель
    - турбокомпаундный двигатель
    - форсированный двигатель
    - четырёхтактный двигатель
    - четырёхцилиндровый двигатель
    - шестицилиндровый двигатель
    - экономичный двигатель

    Русско-английский автомобильный словарь > двигатель

  • 7 изделие

    Русско-английский словарь нормативно-технической терминологии > изделие

  • 8 с

    аварийная связь с воздушным судном
    air distress communication
    аварийная ситуация с воздушным судном
    aircraft emergency
    автомобиль с вильчатым подъемником
    fork-lift
    агрегат с приводом от двигателя
    engine-driven unit
    амортизатор с большим ходом штока
    long-stroke shock strut
    анализатор с интегрированием по времени
    time-integrating analyser
    антенна с концевым излучателем
    end-fire antenna
    антенна с широким раскрывом
    wide aperture antenna
    аренда воздушного судна вместе с экипажем
    aircraft wet lease
    аэродинамическая труба с закрытой рабочей частью
    closed-throat wind tunnel
    аэродром с бетонным покрытием
    concrete-surfaced aerodrome
    аэродром с жестким покрытием
    rigid pavement aerodrome
    аэродром с командно-диспетчерской службой
    controlled aerodrome
    аэродром с перекрещивающимися ВПП
    X-type aerodrome
    аэродром с твердым покрытием
    hard surface aerodrome
    аэродром с травяным покрытием
    grass aerodrome
    бак с наддувом
    pressurized tank
    билет с несколькими полетными купонами
    multistop ticket
    билет с открытой датой
    open-data ticket
    билет с подтвержденной бронью
    booked ticket
    блок связи автопилота с радиостанцией
    radio-autopilot coupler
    блок связи с курсовой системой
    compass system coupling unit
    блок связи с радиолокационным оборудованием
    radar coupling unit
    блок совмещения радиолокационного изображения с картой
    chart-matching device
    борьба с обледенением
    deicing
    борьба с пожаром
    1. fire fighting
    2. fire-fighting ведомый с помощью радиолокатора
    radar-guided
    вертолет большой грузоподъемности с внешней подвеской
    flying crane helicopter
    вертолет с несколькими несущими винтами
    multirotor
    вертолет с одним несущим винтом
    1. single main rotor helicopter
    2. single-rotor ветер с левым вращением
    veering wind
    ветер с правым вращением
    backing wind
    взлетать с боковым ветром
    takeoff with crosswind
    взлет с боковым ветром
    crosswind takeoff
    взлет с впрыском воды
    wet takeoff
    взлет с использованием влияния земли
    ground effect takeoff
    взлет с крутым набором высоты
    climbing takeoff
    взлет с ограниченной площадки
    spot takeoff
    взлет с ракетным ускорителем
    rocket-assisted takeoff
    взлет с реактивным ускорителем
    jet-assisted takeoff
    включать подачу топлива из бака с помощью электрического крана
    switch to the proper tank
    включать подачу топлива из бока с помощью механического крана
    turn the proper tank on
    воздухозаборник с пусковым регулированием
    controlled-starting intake
    воздухозаборник с регулируемой передней кромкой
    variable lip air intake
    воздухозаборник с фиксированной передней кромкой
    fixed-lip air intake
    воздушное пространство с запретом визуальных полетов
    visual exempted airspace
    воздушное судно с верхним расположением крыла
    high-wing aircraft
    воздушное судно с газотурбинными двигателями
    turbine-engined aircraft
    воздушное судно с двумя двигателями
    twin-engined aircraft
    воздушное судно с двумя и более двигателями
    multiengined aircraft
    воздушное судно с неподвижным крылом
    fixed-wing aircraft
    воздушное судно с несущим винтом
    rotary-wing aircraft
    воздушное судно с несущим фюзеляжем
    lift-fuselage aircraft
    воздушное судно с низким расположением крыла
    low-wing aircraft
    воздушное судно с одним двигателем
    1. single-engined aircraft
    2. one-engined aircraft воздушное судно с одним пилотом
    single-pilot aircraft
    воздушное судно с поршневым двигателем
    piston-engined aircraft
    воздушное судно с треугольным крылом
    delta-wing aircraft
    воздушное судно с турбовинтовыми двигателями
    turboprop aircraft
    воздушное судно с турбореактивными двигателями
    turbojet aircraft
    воздушное судно с убранной механизацией крыла
    clean aircraft
    воздушное судно с удлиненным фюзеляжем
    stretched aircraft
    воздушное судно с узким фюзеляжем
    narrow-body aircraft
    воздушное судно с фюзеляжем типовой схемы
    regular-body aircraft
    воздушное судно с экипажем из нескольких человек
    multicrew aircraft
    воздушные перевозки с большим количеством промежуточных остановок
    multistop service
    воздушный винт с автоматически изменяемым шагом
    automatic pitch propeller
    воздушный винт с автоматической регулировкой
    automatically controllable propeller
    воздушный винт с большим шагом
    high-pitch propeller
    воздушный винт с гидравлическим управлением шага
    hydraulic propeller
    ВПП с гладкой поверхностью
    smooth runway
    ВПП с дерновым покрытием
    sodded runway
    ВПП с жестким покрытием
    rigid pavement runway
    ВПП с искусственным покрытием
    paved runway
    ВПП с мягким покрытием
    soft-surface runway
    ВПП с низким коэффициентом сцепления
    slippery runway
    ВПП с поперечным уклоном
    cross-sloped runway
    ВПП с твердым покрытием
    hard-surface runway
    ВПП с травяным покрытием
    1. grass strip
    2. turf runway вращаться с заеданием
    be stiff to rotate
    временно снимать с эксплуатации
    lay up
    время налета с инструктором
    flying dual instruction time
    в соответствии с техническими условиями
    in conformity with the specifications
    втулка с устройством для флюгирования
    feathering hub
    входное устройство с использованием сжатия воздуха на входе
    internal-compression inlet
    выдерживание курса полета с помощью инерциальной системы
    inertial tracking
    выключатель с нормально замкнутыми контактами
    normally closed switch
    выключатель с нормально разомкнутыми контактами
    normally open switch
    выполнение полетов с помощью радиосредств
    radio fly
    выполнять полеты с аэродрома
    operate from the aerodrome
    выпуск шасси с помощью скоростного напора
    wind-assisted extension
    выруливать с места стоянки
    leave a parking area
    высотомер с кодирующим устройством
    encoding altimeter
    высотомер с сигнализатором
    contacting altimeter
    выходить на курс с левым разворотом
    roll left on the heading
    выходить на курс с правым разворотом
    roll right on the heading
    газотурбинный двигатель с осевым компрессором
    axial-flow итьбю.gas turbine engine
    генератор с приводом от двигателя
    engine-driven generator
    генератор с шунтовой обмоткой
    shunt wound generator
    герметизация фонаря кабины с помощью шланга
    canopy strip seal
    гироскоп с воздушной опорой осей
    air bearing gyroscope
    глушитель с убирающейся сдвижной створкой
    retractable spade silencer
    глушитель с убирающимися ковшами
    retractable lobe silencer
    гроза с градом
    thunderstorm with hail
    гроза с пыльной бурей
    thunderstorm with duststorm
    грузовое воздушное судно с откидной носовой частью
    bow-loader
    дальность полета с максимальной загрузкой
    full-load range
    дальность полета с полной коммерческой загрузкой
    commercial range
    данные, полученные с борта
    air-derived data
    двигатель с большим ресурсом
    longer-lived engine
    двигатель с высокой степенью двухконтурности
    high bypass ratio engine
    двигатель с высокой степенью сжатия
    high compression ratio engine
    двигатель с левым вращением ротора
    left-hand engine
    двигатель с низкой степенью двухконтурности
    low bypass ratio engine
    двигатель с пониженной тягой
    derated engine
    двигатель с правым вращением ротора
    right-hand engine
    движение с левым кругом
    left-hand traffic
    движение с правым кругом
    right-hand traffic
    двухконтурный турбореактивный двигатель с дожиганием топлива во втором контуре
    duct burning bypass engine
    дистанционное управление рулями с помощью электроприводов
    fly-by-wire
    диффузор с косым скачком уплотнения
    oblique-shock diffuser
    донесение с борта
    air report
    задерживать рейс с коммерчески оправданными целями
    justify a delay commercially
    задержка вылета с целью стыковки
    layover
    закрылок с внешним обдувом
    external blown flap
    закрылок с дополнительным внутренним обдувом
    augmented internal blown flap
    закрылок с отсосом пограничного слоя
    suction flap
    зализ крыла с фюзеляжем
    wing-to-fuselage fillet
    замер с целью определения положения
    spot measurement
    запас устойчивости с застопоренным управлением
    margin with stick fixed
    запуск двигателя с забросом температуры
    engine hot starting
    (выше допустимой) заход на посадку не с прямой
    nonstraight-in approach
    заход на посадку с выпущенными закрылками
    approach with flaps down
    заход на посадку с использованием бортовых и наземных средств
    coupled approach
    заход на посадку с левым разворотом
    left-hand approach
    заход на посадку с непрерывным снижением
    continuous descent approach
    заход на посадку с обратным курсом
    1. back course approach
    2. one-eighty approach заход на посадку с отворотом на расчетный угол
    teardrop approach
    заход на посадку с правым разворотом
    right-hand approach
    заход на посадку с прямой
    straight-in approach
    заход на посадку с прямой по приборам
    straight-in ILS-type approach
    заход на посадку с уменьшением скорости
    decelerating approach
    зона воздушного пространства с особым режимом полета
    airspace restricted area
    избегать столкновения с препятствием
    avoid the obstacle
    импульсный огонь с конденсаторным разрядом
    capacitor discharge light
    индикатор с круговой шкалой
    dial test indicator
    испытание с имитацией аварии
    controlled-crash test
    испытание с наружной подвеской
    store test
    кабина с двойным управлением
    dual cockpit
    канал с общей несущей
    common carrier channel
    карта с навигационной сеткой
    grid map
    квалификационная отметка с ограниченным сроком действия
    expiry-type rating
    ключ с круглой головкой
    ring wrench
    ключ с трещоткой
    ratchet wrench
    компоновка кресел с минимальным шагом
    high-density seating
    конечный удлиненный заход на посадку с прямой
    long final straight-in-approach operation
    конструкция с работающей обшивкой
    stressed-skin structure
    контакт с объектами на земле
    ground contact
    конфигурация с акустической облицовкой
    acoustic lining configuration
    конфигурация с выпущенной механизацией
    out-clean configuration
    конфигурация с выпущенными шасси и механизацией
    dirty configuration
    крен с помощью элеронов
    aileron roll
    кресло с отклоняющейся спинкой
    reclining seat
    крыло с изменяемой площадью
    variable-area wing
    крыло с изменяемым углом установки
    variable-incidence wing
    крыло с механизацией для обеспечения большей подъемной силы
    high-lift devices wing
    крыло с отрицательным углом поперечного ВЭ
    anhedral wing
    крыло с положительным углом поперечного ВЭ
    dihedral wing
    крыло с работающей обшивкой
    stressed-skin wing
    крыло с управляемой циркуляцией
    augmentor wing
    крыло с управляемым пограничным слоем
    backswept boundary layer controlled wing
    летать с брошенным штурвалом
    fly hand off
    летать с выпущенным шасси
    fly a gear down
    летать с убранным шасси
    fly a gear up
    линия при сходе с ВПП
    turnoff curve
    линия пути по схеме с двумя спаренными разворотами
    race track
    лопасть с шарнирной подвеской
    articulated blade
    маршрут вылета с радиолокационным обеспечением
    radar departure route
    маршрут прилета с радиолокационным обеспечением
    radar arrival route
    маршрут с минимальным уровнем шума
    minimum noise route
    маяк с рамочной антенной
    loop beacon
    место стоянки с твердым покрытием
    hardstand
    методика выполнения полета с минимальным шумом
    minimum noise procedure
    механизм реверса с полуцилиндрическими струеотражательными заслонками
    semicylindrical target-type reverser
    модуль с быстроразъемным соединением
    plug-in module
    моноплан с высокорасположенным крылом
    high-wing monoplane
    моноплан с низко расположенным крылом
    low-wing monoplane
    муфта сцепления двигателя с несущим винтом вертолета
    rotor clutch assembly
    наблюдение с борта воздушного судна
    aircraft observation
    наблюдение с воздуха
    1. air survey
    2. aerial inspection набор высоты с убранными закрылками
    flap-up climb
    набор высоты с ускорением
    acceleration climb
    навигационная система с графическим отображением
    pictorial navigation system
    (информации) небольшой привязной аэростат с тканевым оперением
    kytoon
    необратимое управление с помощью гидроусилителей
    power-operated control
    нерегулируемое сопло с центральным телом
    fixed plug nozzle
    несущий винт с приводом от двигателя
    power-driven rotor
    несущий винт с шарнирно закрепленными лопастями
    articulated rotor
    облачность с разрывами
    broken sky
    обратимое управление с помощью гидроусилителей
    power-boost control
    опасно при соприкосновении с водой
    danger if wet
    опасность столкновения с птицами
    bird strike hazard
    опознавать аэродром с воздуха
    identify the aerodrome from the air
    опора с масляным амортизатором
    oleo leg
    определение местоположения с помощью радиосредства
    radio fixing
    определять местоположение с воздуха
    indicate the location from the air
    опрыскивание сельскохозяйственных культур с воздуха
    aerial crop spraying
    опыление с воздуха
    aerial dusting
    остановка с коммерческими целями
    1. traffic stop
    2. revenue stop остановка с некоммерческими целями
    1. nontraffic stop
    2. stopping for nontraffic purpose открытый текст с сокращениями
    abbreviated plain language
    парашют с не полностью раскрывшимся куполом
    streamer
    патрулирование линий электропередач с воздуха
    power patrol operation
    пеленг с учетом направления ветра
    wind relative bearing
    перевозка с оплатой в кредит
    collect transportation
    перевозка с предварительной оплатой
    prepaid transportation
    перевозки с обеспечением
    interline traffic
    передача с земли
    ground transmission
    переходить на управление с помощью автопилота
    switch to the autopilot
    перрон с искусственным покрытием
    paved apron
    пилотировать с помощью автоматического управления
    fly automatically
    пилотировать с помощью штурвального управления
    fly manually
    план полета, переданный с борта
    air-filed flight plan
    пневматическая шина с армированным протектором
    tread-reinforced tire
    погрузчик с двумя платформами
    double-deck loader
    подхожу к четвертому с левым разворотом
    on the left base leg
    поиск с воздуха
    air search
    покрышка с насечкой
    ribbed tire
    полет в связи с особыми обстоятельствами
    special event flight
    полет для выполнения наблюдений с воздуха
    1. aerial survey flight
    2. aerial survey operation полет для контроля состояния посевов с воздуха
    crop control operation
    полет для ознакомления с местностью
    orientation flight
    полет по сигналам с земли
    directed reference flight
    полет с боковым ветром
    cross-wind flight
    полет с визуальной ориентировкой
    visual contact flight
    полет с выключенным двигателем
    engine-off flight
    полет с выключенными двигателями
    power-off flight
    полет с дозаправкой топлива в воздухе
    refuelling flight
    полет с инструктором
    1. dual operation
    2. dual flight полет с креном
    banked flight
    полет с набором высоты
    1. nose-up flying
    2. climbing flight полет с несимметричной тягой двигателей
    asymmetric flight
    полет с обычным взлетом и посадкой
    conventional flight
    полет с отклонением
    diverted flight
    полет с парированием сноса
    crabbing flight
    полет с пересечением границ
    border-crossing flight
    полет с помощью радионавигационных средств
    radio navigation flight
    полет с попутным ветром
    tailwind flight
    полет с посадкой
    entire journey
    полет с постоянным курсом
    single-heading flight
    полет с промежуточной остановкой
    one-stop flight
    полет с работающим двигателем
    engine-on flight
    полет с работающими двигателями
    1. power-on flight
    2. powered flight полет с сопровождающим
    chased flight
    полет с убранными закрылками
    flapless flight
    полет с уменьшением скорости
    decelerating flight
    полет с ускорением
    accelerated flight
    полет с целью перебазирования
    positioning flight
    полет с целью установления координат объекта поиска
    aerial spotting operation
    полет с частного воздушного судна
    private flight
    полеты с использованием радиомаяков
    radio-range fly
    положение с высоко поднятой носовой частью фюзеляжа
    high nose-up attitude
    получать информацию с помощью регистратора
    obtain from recorder
    порыв ветра с дождем
    blirt
    посадка по командам с земли
    1. ground-controlled landing
    2. talk-down landing посадка с автоматическим выравниванием
    autoflare landing
    посадка с асимметричной тягой
    asymmetric thrust landing
    посадка с боковым сносом
    lateral drift landing
    посадка с визуальной ориентировкой
    contact landing
    посадка с выкатыванием
    overshooting landing
    посадка с выполнением полного круга захода
    full-circle landing
    посадка с выпущенным шасси
    1. wheels-down landing
    2. gear-down landing посадка с использованием реверса тяги
    reverse-thrust landing
    посадка с коротким пробегом
    short landing
    посадка с немедленным взлетом после касания
    touch-and-go landing
    посадка с неработающим воздушным винтом
    dead-stick landing
    посадка с отказавшим двигателем
    1. dead-engine landing
    2. engine-out landing посадка с парашютированием
    pancake landing
    посадка с повторным ударом после касания ВПП
    rebound landing
    посадка с полной остановкой
    full-stop landing
    посадка с помощью ручного управления
    manland
    посадка с превышением допустимой посадочной массы
    overweight landing
    посадка с прямой
    straight-in landing
    посадка с работающим двигателем
    power-on landing
    посадка с убранными закрылками
    flapless landing
    посадка с убранным шасси
    1. wheels-up landing
    2. belly landing 3. fear-up landing посадка с упреждением сноса
    trend-type landing
    посадка с частично выпущенными закрылками
    partial flap landing
    посадка с этапа планирования
    glide landing
    посадочная площадка с естественным покрытием
    natural airfield
    посадочная площадка с искусственным покрытием
    surfaced airfield
    посадочная площадка с травяным покрытием
    1. turf airfield
    2. grass airfield 3. grass landing area пояс с уголком
    angle cap
    предкрылок с гидроприводом
    hydraulic slat
    происшествие с воздушным судном
    accident to an aircraft
    происшествие, связанное с перевозкой опасных грузов
    dangerous goods occurrence
    прокладка маршрута с помощью бортовых средств навигации
    aircraft self routing
    противопожарное патрулирование с воздуха
    fire control operation
    прыгать с парашютом
    jump with parachute
    прыжки с парашютом
    parachute jumping
    радиолокатор с большой разрешающей способностью
    fine grain radar
    радиолокатор с импульсной модуляцией
    pulse-modulated radar
    радиолокатор с остронаправленным лучом
    pencil beam radar
    радиолокационное наблюдение с помощью зонда
    radarsonde observation
    разворот с внутренним скольжением
    slipping turn
    разворот с креном
    banked turn
    разворот с креном к центру разворота
    inside turn
    разворот с креном от центра разворота
    outside turn
    разворот с набором высоты
    climbing turn
    разворот с наружным скольжением
    skidding turn
    разворот с помощью элеронов
    bank with ailerons
    разворот с упреждением
    lead-type turn
    разворот с целью опознавания
    identifying turn
    разрешение на заход на посадку с прямой
    clearance for straight-in approach
    распространять с помощью телетайпа
    disseminate by teletypewriter
    расходы, связанные с посадкой для стыковки рейсов
    layover expenses
    реактивное воздушное судно с низким расходом топлива
    economical-to-operate jetliner
    реактивное сопло с центральным телом
    plug jet nozzle
    редуктор с неподвижным венцом
    stationary ring gear
    режим работы с полной нагрузкой
    full-load conditions
    рейс с гражданского воздушного судна
    civil flight
    рейс с обслуживанием по первому классу
    first-class flight
    рейс с пересадкой
    transfer flight
    с автоматическим управлением
    self-monitoring
    сбиваться с курса
    1. wander off the course
    2. become lost сближение с землей
    ground proximity
    свидетельство с ограниченным сроком действия
    expiry-type license
    связь по запросу с борта
    air-initiated communication
    сеть передачи данных с пакетной коммутацией
    packet switched data network
    сеть с высокой пропускной способностью
    high level network
    сигнализация об опасном сближении с землей
    ground proximity warning
    сигнализация самопроизвольного ухода с заданной высоты
    altitude alert warning
    сигнал с применением полотнища
    paulin signal
    система визуального управления стыковкой с телескопическим трапом
    visual docking guidance system
    система пожаротушения с двумя очередями срабатывания
    two-shot fire extinguishing system
    система предупреждения опасного сближения с землей
    ground proximity warning system
    система предупреждения столкновения с проводами ЛЭП
    wire collision avoidance system
    система привода с постоянной скоростью
    constant speed drive system
    система распыления с воздуха
    aerial spraying system
    (например, удобрений) система с тройным резервированием
    triplex system
    система управления с обратной связью
    feedback control system
    скидка с тарифа
    1. reduction on fare
    2. fare taper скидка с тарифа за дальность
    distance fare taper
    скорость захода на посадку с убранной механизацией крыла
    no-flap - no-slat approach speed
    скорость захода на посадку с убранными закрылками
    no-flap approach speed
    скорость захода на посадку с убранными предкрылками
    no-slat approach speed
    скорость набора высоты с убранными закрылками
    1. no-flap climb speed
    2. flaps-up climbing speed 3. flaps-up climb speed скорость схода с ВПП
    turnoff speed
    с крыльями
    winged
    слой атмосферы с температурной инверсией
    lid
    с момента ввода в эксплуатацию
    since placed in service
    с набором высоты
    with increase in the altitude
    снижение с работающим двигателем
    power-on descent
    снижение с работающими двигателями
    power-on descend operation
    с низко расположенным крылом
    low-wing
    снимать груз с борта
    take off load
    снимать с замков
    unlatch
    снимать с упора шага
    unlatch the pitch stop
    (лопасти воздушного винта) снимать с эксплуатации
    1. take out of service
    2. with-draw from service снимать шасси с замка
    release the landing gear lock
    снимать шасси с замков
    unlatch the landing gear
    снимать шасси с замков убранного положения
    release the landing gear
    сносить с курса
    drift off the course
    снятие воздушного судна с эксплуатации
    aircraft removal from service
    снятый с эксплуатации
    obsolete
    событие, связанное с приземлением и немедленным взлетом
    touch-and-go occurrence
    соединение крыла с фюзеляжем
    wing-to-fuselage joint
    сообщение с борта
    air-report
    соосное кольцевое сопло с обратным потоком
    inverted coannular nozzle
    соосное сопло с центральным телом
    coannular plug nozzle
    сопло с косым срезом
    skewed jet nozzle
    сопло с многорядными шумоглушащими лепестками
    multirow lobe nozzle
    сопло с реверсом тяги
    thrust-reverse nozzle
    сопло с регулируемым сечением
    variable area nozzle
    сопло с сеткой
    gaze nozzle
    сопло с центральным телом
    bullet-type nozzle
    с передней центровкой
    bow-heavy
    с приводом от двигателя
    power-operated
    спуск с парашютом
    parachute descent
    с регенеративным охлаждением
    self-cooled
    (о системе) с системой автоматической смазки, автоматически смазывающийся
    self-lubrication
    сталкиваться с препятствием
    fail to clear
    с тенденцией к пикированию
    nose-heavy
    столкновение птиц с воздушным судном
    bird strike to an air craft
    столкновение с огнями приближения
    approach lights collision
    столкновение с птицами
    birds collision
    страгивать с места
    move off from the rest
    стремянка с гофрированными ступеньками
    safety-step ladder
    строительные работы с помощью авиации
    construction work operations
    с убранной механизацией
    clean
    с убранными закрылками
    flapless
    схема захода на посадку по командам с земли
    ground-controlled approach procedure
    схема полета с минимальным расходом топлива
    fuel savings procedure
    схема с минимальным расходом топлива
    economic pattern
    сходить с ВПП
    turn off
    с целью набора высоты
    in order to climb
    сцепление колес с поверхностью ВПП
    runway surface friction
    тариф для перевозки с неподтвержденным бронированием
    standby fare
    тариф на полет с возвратом в течение суток
    day round trip fare
    телеграфное обслуживание с дистанционным управлением
    remote keying service
    тележка с баллонами сжатого воздуха
    air bottle cart
    топливозаправщик с цистерной
    fuel tank trailer
    траектория захода на посадку с прямой
    straight-in approach path
    траектория полета с предпосылкой к конфликтной ситуации
    conflicting flight path
    трафарет с инструкцией по применению
    instruction plate
    трафарет с подсветом
    lighted sign
    трафарет с торцевым подсветом
    edge-lit sign
    (в кабине экипажа) тренажер с подвижной кабиной
    moving-base simulator
    тренировочный полет с инструктором
    training dual flight
    турбина с приводом от выхлопных газов
    power recovery turbine
    турбина с приводом от набегающего потока
    ram-air turbine
    турбовентиляторный двигатель с высокой степенью двухконтурности
    high-bypass fanjet
    турбовентиляторный двигатель с низким расходом
    low-consumption fanjet
    указатель с перекрещивающимися стрелками
    cross-pointer indicator
    указатель ухода с курса
    off-course indicator
    уменьшение опасности столкновения с птицами
    birds hazard reduction
    уменьшение тяги с целью снижения шума
    noise abatement thrust cutback
    уплотнение с помощью поршневого кольца
    piston-ring type seal
    уплотнение с частотным разделением
    frequency-division multiplexing
    управление креном с помощью аэродинамической поверхности
    aerodynamic roll control
    управление с помощью автопилота
    autopilot control
    управление с помощью аэродинамической поверхности
    aerodynamic control
    управление с помощью гидроусилителей
    1. assisted control
    2. powered control управляемый с помощью радиолокатора
    radar-directed
    управлять рулями с помощью электроприводов
    fly by wire
    условия с использованием радиолокационного контроля
    radar environment
    устройство для замера сцепления колес с поверхностью
    surface friction tester
    уходить с глиссады
    break glide
    уходить с заданного курса
    drift off the heading
    уходить с заданной высоты
    leave the altitude
    уходить с набором высоты
    1. climb out
    2. climb away уход на второй круг с этапа захода на посадку
    missed approach operation
    уход с набором высоты
    climbaway
    участок маршрута с набором высоты
    upward leg
    участок маршрута с обратным курсом
    back leg
    учебный полет с инструктором
    instructional dual flight
    фильтр с автоматической очисткой
    1. depolluting filter
    2. self-cleaning filter фильтр с защитной сеткой
    gauze strainer
    фюзеляж с работающей обшивкой
    stressed skin-type fuselage
    фюзеляж с сечением из двух окружностей
    double-bubble fuselage
    чартерный рейс в связи с особыми обстоятельствами
    special event charter
    чартерный рейс с полной загрузкой
    1. whole-plane charter
    2. plane-load charter чартерный рейс с предварительным бронированием мест
    advance booking charter
    чартерный рейс с промежуточной посадкой
    one-stop charter
    чартерный рейс с пропорциональным распределением доходов
    pro rata charter
    шасси с использованием скоростного напора
    wind-assisted landing gear
    шасси с ориентирующими колесами
    castor landing gear
    шасси с хвостовой опорой
    tailwheel landing gear
    штанга с распыливающими насадками
    spray boom
    штуцер с жиклером
    orifice connection
    эвакуация воздушного судна с места аварии
    aircraft salvage
    эксплуатация с перегрузкой
    overload operation
    эксплуатировать в соответствии с техникой безопасности
    operate safety
    элерон с аэродинамической компенсацией
    aerodynamically-balanced
    элерон с весовой компенсацией
    mass-balanced aileron
    элерон с внутренней компенсацией
    1. internally-balanced aileron
    2. sealed-type элерон с дифференциальным отклонением
    differential aileron
    элерон с жестким управлением от штурвала
    manual aileron
    элерон с зависанием
    dropped aileron
    элерон с компенсацией
    balanced aileron
    элерон с приводом от гидроусилителя
    powered aileron
    элерон с роговой компенсацией
    horn-balanced aileron

    Русско-английский авиационный словарь > с

  • 9 двигатель



    - (газотурбинный, поршневой, тепловой) — engine
    - (гидравлический, пневматический, электрический) — motor
    -, авиационный — aircraft engine
    двигатель, используемый или предназначенный к использованию в авиации для перемещения и (или) поддержания ла, на котором он установлен, в воздухе (рис. 46). — an engine that is used or intended to be used in propelting or lifting aircraft.
    - аналогичной конструкцииengine of identical design and сonstruction
    - без наддува (ид)unsupercharged engine
    -, безредукторный — direct-drive engine
    -, безредукторный винто-вентиляторный (незакопоченный) — unducted fan engine (udf)
    винтовентиляторы вращаются непосредственно силовой (свободной) турбиной с противоположным вращением рабочих колес. — fans are driven directly by a counter-rotating turbine, eliminating complexity of a reduction gearbox.
    -, бензиновый — gasoline engine
    -, боковой (рис. 13) — side engine
    - в подвесной мотогондолеpod engine
    -, вентиляторный, с противоположным вращением вентиляторов — contrafan engine
    - вертикальной наводки, приводной (стрелкового вооружения) — (gun) elevation drive motor
    -, винто-вентиляторный (тввд) — prop-fan engine
    -, включенный (работающий) — operating/running/engine
    -, внешний (по отношению к фюзеляжу) (рис. 44) — outboard engine
    - внутреннего сгоранияinternal-combustion engine
    -, внутренний (по отношению к наружному двигателю) (рис. 44) — inboard engine
    - воздушного охлаждения (пд)air-cooled engine
    двигатель, у которого отвод тепла от цилиндров производится воздухом, непосредственно обдувающим их. — an engine whose running temperature is controlled by means of air cooled cylinders.
    -, вспомогательный (всу) — auxiliary power unit (apu)
    -, выключенный — shutdown engine
    -, выключенный (неработающий) — inoperative engine
    -, высокооборотный — high-speed engine
    -, высотный — high-altitude engine
    -, газотурбинный (гтд) — turbine engine
    -, газотурбинный (вертолетныи) — helicopter turboshaft engine
    -,газотурбинный-энергоузел (стартер-энергоузел) — turbine-starter - auxiliary power unit, starter - apu
    - (-) генераторmotor-generator
    устройство для преобразования одного вида эл. энергии в другую (напр., переменный ток в постоянный). — а motor-generator combination for converting one kind of electric power to another (e.g. ас to dc)
    - горизонтальной наводки, приводной (стрелкового вооружения) — (gun) azimuth drive motor
    - двухвальной схемы (турбовальный)two-shaft turbine engine
    -, двухвальный турбовинтовой — two-shaft turboprop engine
    -, двухвальный турбореактивный — two-shaft /-rotor, -spool/turbojet engine
    -, двухкаскадный — two-rotor /-shaft, -spool/ engine, twin-spool engine
    двухвальный турбореактивный двигатель называется также двухроторным или двухкаскадным двигателем. — а two-rotor engine is a twoshaft or two-spool engine with lp and hp compressors and hp and lp turbines.
    -, двухкаскадный, двухконтурный, (турбореактивный) — two-rotor /twin-spool/ by-pass turbo-jet engine
    -, двухкаскадный, турбовальный, газотурбинный, со свободной турбиной — two-rotor /twin-spool/ turboshaft engine with free-power turbine
    -, двухкаскадный, турбовентиляторвый с устройством отклонения направления тяги — two-rotor /twin-spool/ turbofan engine with thrust deflector system
    -, двухконтурный — by-pass /bypass/ engine
    гтд, в котором, помимо основного внутреннего (первого) контура, имеется наружный (второй) контур, представляющий собой канал кольцевого сечения, оканчивающийся у реактивного сопла. — in а by-pass engine, a part of the air leaving the lp cornpressor is dueted through the by-pass duct around the engine main duct to the exhaust unit to be exhausted to the atmosphere.
    -, двухконтурный с дожиганиem во втором контуре — duct-burning by-pass engine
    -, двухконтурный со смешиванием потоков наружного и и внутренного контуров — by-pass exhaust mixing engine
    -, двухроторный — two-rotor engine
    - двухрядная звезда (пд)double-row radial engine
    двигатель, у которого цнлиндры расположены двумя рядами радиально относительнo одного oбщего коленчатоro вала. — an engine having two rows of cylinders arranged radially around а common crankshaft. the corresponding front and rear cylinders may or may not be in line.
    -, двухтактный (пд) — two-cycle engine
    -, дозвуковой — subsonic engine
    -, доработанный по модификации (1705) — engine incorporating mod. (1705), post-mod. (1705) engine
    -, звездообразный — radial engine
    поршневой двигатель с радиальным расположением цилиндров, оси которых лежат в одной, двух или нескольких плоскостях, перпендикулярных к оси коленчатого вала — an engine having stationary cylinders arranged radially around а commom crankshaft.
    -, звездообразный двухрядный — double-row radial engine
    -, звездообразный однорядный — single-row radial engine
    -, исполнительный (эл.) — (electric) actuator, servo motor
    -, исполнительный, канала курса (крена или тангажа) (гироплатформы) — azimuth (roll or pitch) servornotor
    -, карбюраторный (пд) — carburetor engine
    -, коррекционный (гироскопического прибора) — erection torque motor
    -, критический — critical engine
    двигатель, отказ которого вызывает наиболее неблагоприятные изменения в поведении самолета, управляемости и избытке тяги. — "critical engineп means the engine whose failure would most adversely affect the performance or handling qualities of an aircraft.
    -, крыльевой (установленный на крыле) — wing engine
    - левого вращенияengine of lh rotation
    -, маломощный — low-powered engine
    -, многорядный (пд) — multirow engine
    -, многорядный звездообразный — multirow radial engine
    -, модифицированный — modified engine
    - модульной конструкцииmodule-construction engine

    lp compressor - module i, hp compressor - module 2, etc.
    -, мощный — high-powered engine
    -, недоработанный no модификацин (1705) — engine not incorporating mod. (1705), pre-mod. (1705) engine
    -, незакапоченный — uncowled engine
    - непосредственного впрыска (пд)fuel injection engine
    -, неработающий — inoperative engine
    -, одновальный (гтд) — single-shaft /single-rotor/ turbine engine
    -, одновальный двухконтурный — single-shaft /single-rotor/ bypass engine
    -, одновальный турбовентиляторный — single-shaft /single-rotor/ turbofan engine
    -, одновальный турбовинтовой — single-shaft turboprop engine
    -, одновальный турбореактивный — single-shaft /single-rotor/turbojet engine
    -, однорядный (пд) — single-row engine
    -, опытный — prototype engine
    двигатель определенного тиna, еще не прошедший типовые государственные испытания. — the tirst engine of a type and arrangement not approved previously, to be submitted for type approval test.
    -, основной — main engine
    -, оставшийся (продолжающий работать) — remaining engine
    -, отказавший — inoperative/failed/ engine
    - отработки (эл., исполнительный) — servomotor
    - отработки следящей системыservo loop drive motor
    - подтяга (патронной ленты)ammunition booster torque motor
    -, поперечный коррекционный (авиагоризонта) — roll erection torque motor
    -, поршневой (пд) — reciprocating engine
    - правого вращенияengine of rh rotation
    -, продольный коррекционный (авиагоризонта) — pitch erection torque motor
    -, прямоточный — ramjet engine
    двигатель без механического компрессора, в котором сжатие воздуха обеспечивается поступательным движением самого двигателя. — а jet engine with no meehanical compressor, and using the air for combustion compressed by forward motion of the engine.
    - работающийoperating engine
    -, работающий с перебоями — rough engine
    двигатель, работающий с неисправной системой зажигания или подачи топлива (рабочей смеси) — an engine that is running or firing unevenly, usually due to а faulty condition in either the fuel or ignition systems.
    - рамы крена (гироплатформыroll-gimbal servomotor
    - рамы курса (гироплатформыazimuth-gimbal servomotor
    - рамы тангажа (гироплатформы)pitch-gimbal servomotor
    -, реактивный — jet-engine
    двигатель, в котором энергия топлива преобразуется в кинетическую энергию газовой струи, вытекающей из двигателя, a получающаяся за счет этого сила реакции нenоcредственно используется как сила тяги для перемещения летательного аппарата. — an aircraft engine that derives all or most of its thrust by reaction to its ejection of combustion products (or heated air) in a jet and that obtains oxygen from the atmosphere for the combustion of its fuel.
    -, реактивный, пульсирующий — pulse jet (engine)
    применяется для непосредственного вращения несущеro винта вертолета. — pulse jets are designed for helicopter rotor propulsion.
    -, ремонтный — overhauled engine
    серийный двигатель, отремонтированный или восстановленный до состояния, удовлетворяющего требованиям серийного стандарта, и пригодный для дальнейшей эксплуатации в течение установленного межремонтного ресурса. — an engine which has been repaired or reconditioned to а standard rendering it eligible for the complete overhaul life agreed by the national authority.
    - с внешним смесеобразованием (пд)carburetor engine
    двигатель внутреннего сгорания, у которого горючая смесь образуется вне рабочего цилиндра. — an engine in which the fuel/air mixture is formed in the carburetor.
    - с внутренним смесеобразованиемfuel-injection engine
    двигатель, у которого горючая смесь образуется внутри рабочего цилиндра. — an engine in which fuel is directly injected into the cylinders.
    - с водяным охлаждением (пд)water-cooled engine
    - с высокой степенью сжатияhigh-compression engine
    - с нагнетателем (пд)supercharged engine
    - с наддувом (пд) с осевым компрессором (пд)supercharged engine axial-flom turbine engine
    - с передним расположением вентилятораfront fan turbine engine
    - с противоточной камерой сгорания (гтд)reverse-flow turbine engine
    - с редукторомengine with reduction gear
    - с форсажной камерой (гтд). двигатель с дополнительным сжиганием топлива в специальной камере за турбиной — engine with afterburner, afterburning engine, reheat(ed) engine, engine with thrust augmentor
    - с форсированной (взлетной) мощностьюengine with augmented (takeoff) power rating
    - с центробежным компрессором (гтд)radial-flow turbine engine
    -, серийный — series engine
    двигатель, изготовляемый в серийном производстве и соответствующий опытному двигателю, принятому при государственных испытаниях для серийного производства. — an engine essentially identiin design, in materials, and in methods of construction, with one which has been approved previously.
    - со свободной турбинойfree-luroine engine
    двигатель с двумя турбинами, валы которых кинематически не связаны. одна из турбин обычно служит для привода компрессора, а другая используется для передачи полезной работы потребителю, например, воздушному (или несущему) винту. — the engine with two turbines whose shafts are not mechanically coupled. one turbine drives the compressor, and the other free turbine drives the propeller or rotor.
    - следящей системы по внутреннему крену (гироплатформы)inner roll gimbal servomotor
    - следящей системы по наружному крену (гироплатформы)outer roll gimbal servomotor
    - следящей системы по курсу (гироплатформы)azimuth gimbal servomotor
    - следящей системы по тангажу (гироплатформы)pitch gimbal servomotor
    -, собственно — engine itself
    -, средний (рис. 44) — center engine
    - стабилизации гироплатформы — stable platform-stabilization servomotor/servo/
    -, стартовый (работающий при взлете) — booster
    -, стартовый твердотопливный — solid propellant booster
    -, трехкаскадный, турбореактивный, с передним вентилятором — three-rotor /triple-spool, triple shaft/ front fan turbo-jet engine
    -, турбовентиляторный — turbofan engine
    двухконтурный турбореактивный двигатель, в котором часть воздуха выбрасывается за первыми ступенями компрессора низкого давления, а остальная часть воздуха за кнд поступает в основной контур с камерами сгорания. — in the turbofan engine a part of the air bypassed and exhausted to atmosphere after the first (two) stages of lp compressor. about half of the thrust is produced by the fan exhaust.
    -, турбовентиляторный (с дожиганием в вентиляторном контуре) — duct-burning turbofan engine
    -, турбовинтовентиляторный — (turbo) propfan engine, unducted fan engine (ufe)
    -, турбовинтовой (твд) — turboprop engine
    газотурбинный двигатель, в котором тепло превращается в кинетическую энергию реактивной струи и в механическую работу на валу двигателя, которая используется для вращения воздушного винта. — а turboprop engine is a turbine engine driving the propeller and developing an additional propulsive thrust by reaction to ejection of combustion products.
    -, "турбовинтовой" (вертолетный, с отбором мощности на вал) — turboshaft engine
    -, турбовинтовой, с толкающим винтом — pusher-turboprop engine
    -, турбопрямоточный — turbo/ram jet engine
    комбинация из турбореактивного (до м-з) и прямоточного (для больших чисел м). — combines а turbo-jet engine (for speeds up to mach 3) and ram jet engine for higher mach numbers.
    -,турбо-ракетный — turbo-rocket engine
    аналог турбопрямоточному двигателю с автономным кислородным питанием, — а turbo/ram jet engine with its own oxygen to provide combustion.
    -, турбореактивный — turbojet engine
    газотурбинный двигатель (с приводом компрессора от турбин), в котором тепло превращается только в кинетическую энергию реактивной струи. — a jet engine incorporating a turbine-driven air compressor to take in and compress the air for the combustion of fuel, the gases of combustion being used both to rotate the turbine and to create a thrust-producing jet.
    -, установленный в мотогондоле — nacelle-mounted engine
    -, установленный в подвесной мотогондоле — pod engine
    -, четырехтактный (поршневой — four-cycle engine
    за два оборота коленчатого вала происходит четыре хода поршня в каждом цилиндре, по одному такту на ход. такт 1 - впуск всасывание рабочей смеси в цилиндр), такт 2 - матке рабочей смеси, такт 3 - рабочий ход (зажигание смеси), такт 4 - выхлоп (выпуск отработанных газов из цилиндра в атмосферу) — a common type of engine which requires two revolutions of the crankshaft (four strokes of the piston) to complete the four events of (1) admission of or forcing the charged mixture of combustible gas into the cylinder, (2) compression of the charge, (3) ignition and burning of the charge, which develops pressure (power) acting on the piston and (4) exhaust or expulsion of the charge from the cylinder.
    -, шаговой (эл.) — step-servo motor
    -, электрический — electric motor
    устройство, преобразующее электрическую энергию во вращательное механическое движение. — device which converts electrical energy into rotating mechanical energy.
    - (-) энергоузел, газотурбинный (ггдэ) — turbine starter /auxiliary power unit, starter/ apu
    для запуска основн. двигателей, хол. прокрутки (стартерный режим) и привода агрегатов самолета при неработающих двигателях (режим энергоузла), имеет свой электростартер.
    в зоне д. — in the region of the engine
    выбег д. — engine run-down
    гонка д. — engine run
    данные д. — engine data
    заливка д. (пд перед запуском) — engine priming
    замена д. — engine replacement /change/
    запуск д. — engine start
    испытание д. — engine test
    мощность д. — engine power
    на входе в д. — at /in/ inlet to the engine
    обороты д. — engine speed /rpm, rpm/
    опробование д. — engine ground test
    опробование д. в полете — in-flight engine test
    опробование д. на земле — engine ground test
    останов д. (выключение) — engine shutdown
    остановка д. (отказ) — engine failure
    остановка д. (выбег) — run down
    остановка д. вслествие недостатка масла (топлива) — engine failure due to oil (fuel) starvation
    отказ д. — engine failure
    перебои в работе д. — rough engine operation
    подогрев д. — engine heating
    проба д. (на земле) — engine ground test
    прогрев д. — engine warm-up
    прокрутка д. (холодная) — engine cranking /motoring/
    работа д. — engine operation
    разгон д. — engine acceleration
    стоянка д. (период, в течение которого двигатель не работает) — engine shutdown. one hundred starts must be made of which 25 starts must be preceded by at least a two-hour engine shutdown.
    тряска д. — engine vibration
    тяга д. — engine thrust
    установка д. — engine installation
    шум д. — engine noise
    вывешивать д. с помощью лебедки — support weight of the engine by a hoist
    выводить д. на требуемые обороты % — accelerate the engine to a required speed of %
    выключать д. — shut down the engine
    глушить д. — shut down the engine
    гонять д. — run the engine
    заливать д. (пд) — prim the engine
    заменять д. — replace the engine
    запускать д. — start the engine
    запускать д. в воздухе — (re)start the engine
    испытывать д. — test the engine
    опробовать д. на земле — ground test the engine
    останавливать д. — shut down the engine
    подвешивать д. — mount the engine
    поднимать д. подъемником — hoist the engine
    подогревать д. — heat the engine
    проворачивать д. на... оборотов — turn the engine... revolutions
    прогревать д. (на оборотах...%) — warm up the engine (at a speed of... %)
    продопжать полет на (двух) д. — continue flight on (two) engines
    разгоняться на одном д. — accelerate with one engine operating
    разгоняться при неработающем критическом д. — accelerate with the critical епgine inoperative
    сбавлять (убирать) обороты (работающего) д. — decelerate the engine
    увеличивать обороты (работающего) д. — accelerate the engine
    устанавливать д. — install the engine

    Русско-английский сборник авиационно-технических терминов > двигатель

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»